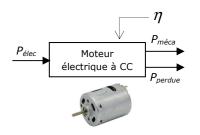


CONSTRUCTION MECANIQUE

Energétique Calculs de puissances

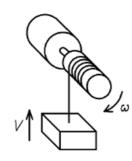

SEQUENCE 5

Activité 4

EXERCICE 1

On considère un moteur à courant continu soumis à une tension U = 12Vet traversé par un courant I = 1,25 A. On mesure également sur le rotor une vitesse de rotation $N = 850 \text{ tr} \cdot \text{min}^{-1}$ et un couple moteur $C_m = 0.155 \ N \cdot m \ .$

b) Calculer en W la puissance mécanique disponible sur le rotor $P_{m\acute{e}ca}$.


- $P_{elec} = 15 W$
- $P_{elec} = 13.8 W$
- $P_{perdue} = 1.2 \ W$

- c) Calculer en W la puissance perdue P_{perdue} .
 - ⇒ Ecrire le principe de conservation.
- **d)** Calculer le rendement énergétique η du moteur.

a) Calculer en W la puissance électrique absorbée P_{elec} .

$\eta = 0.92$

EXERCICE 2

On considère un système de levage composé d'un moteur à courant alternatif alimenté sous une tension efficace U = 230 V et d'un câble s'enroulant sur un cylindre entrainé en rotation par le rotor du moteur.

Au bout du câble est attachée une charge P = 1500 N se déplaçant vers le haut à la vitesse $V = 4 m \cdot min^{-1}$.

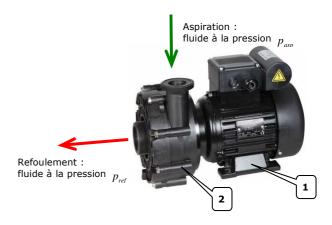
Avec un wattmètre, on mesure la puissance électrique consommée; on trouve $P_{\text{elec}} = 150 \text{ W}$.

- a) Calculer en W la puissance mécanique $P_{m\acute{e}ca}$ correspondant au déplacement de la charge P à la vitesse V.
- **b)** Calculer le rendement énergétique η .

$$P_{m\acute{e}ca} = 100 \, W \, \mid \, \eta = 0.67$$

EXERCICE 3

Une pompe (2) entraînée en rotation par un moteur électrique (1) assure la circulation d'un liquide dans une conduite horizontale.


Des manomètres placés en amont et en aval de la pompe donne les pressions suivantes :

$$p_{asp} = 30 \ bar$$
 et $p_{ref} = 40 \ bar$.

Un débitmètre donne : $Q = 4 m^3 \cdot h^{-1}$.

a) Concernant le moteur :

⇒ sa fonction est de _____l'énergie.

\Rightarrow il $\underline{consomme}$ de l'énergie (ou puissance)	sous forme	·	
⇒ II <u>fournit</u> de l'énergie (ou puissance) sou	s forme	·	Plaque signalétique sur le moteu
b) A partir de la plaque signalétique du moteur,	donner:	O INTE	ROY 16015 ANGOULÊME
\Rightarrow le rendement du moteur : $\eta_{\scriptscriptstyle m}$ =	_	ALOTEUR ACYA	OMER FRANCE
\Rightarrow la puissance utile délivrée sur le rotor : I	$P_m = $		NCHRONE - NFC 51-111 NOV.7 8 90 Lz 595257/3
c) Calculer en kW la puissance P_{conso} consomme		r. kW 11,5 cos	sφ 0,78 ΔV 230 A 6,65
Concernant la pompe :			ents Made in Prance
⇒ le débit au refoulement est □ plus peti Quel principe permet de dire cela ?	_	□ plus grand que	celui à l'aspiration.
⇒ la pression au refoulement est □ p celle à l'aspiration.	lus petite	□ égale	☐ plus grande que
⇒ elle consomme de l'énergie (ou puissanc	ce) sous forme _	·	
⇒ elle fournit de l'énergie (ou puissance) so	ous forme	·	
\Rightarrow sa fonction est de l'éner	gie mais on peu	t dire aussi d'	la pression.
d) D'où provient l'énergie que consomme la por	mpe ?		
e) Calculer en W la puissance hydraulique P_{hydro} de la pompe.			$P_{hydro} = 1.1 \cdot 10^3 W$
f) Calculer le rendement $oldsymbol{\eta}_p$ de la pompe.			$\eta_p = 0.73$
g) Calculer le rendement énergétique global η de l'installation.			$\eta_p = 0.56$
h) Réaliser le schéma-bloc du flux d'énergie de l'installation.			(tout est détaillé dans le corrigé)
EXERCICE 4			
Le vérin ci-contre développe une force de pouss sortie complète de sa tige (200 mm) dure 2 secc		$p = 8 \ bar$ $P = 40$) mm
a) Calculer la vitesse v de sortie de la tige.	$v = 0.1 \ m \cdot s^{-1}$		$\int_{C} d = 18 \ mm$
b) Calculer la puissance mécanique $P_{ extit{m\'eca}}$ dispon	ible.		\vec{F}
	$P_{m\acute{e}ca} = 80~W$	c = 200 mm	>
c) Calculer l'aire S de la surface sur laquelle la $\mathfrak p$	pression pneum	atique s'applique.	$S = 1,26 \cdot 10^{-3} \ m^2$
d) Calculer le débit d'air $\it Q$ dans le vérin.			$Q = 1.26 \cdot 10^{-4} \ m^3 \cdot s^{-1}$
e) Calculer la puissance pneumatique $P_{\scriptscriptstyle pneu}$.			$P_{pneu} = 100 W$
f) Calculer le rendement η du vérin.			$\eta = 0.8$